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Abstract

The concept of squeezing and uncertainty relations are discussed for multimode quantum

light with the consideration of polarization. Using the polarization gauge SU(2) invariance

of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom

from other ones, and consider uncertainty relations characterizing polarization and biphoton

observables. As a consequence, we obtain a new classification of states of unpolarized (and

partially polarized) light within quantum optics. We also discuss briefly some interrelations of

our analysis with experiments connected with solving some fundamental problems of physics.

1 Introduction

Polarization properties of light were widely investigated long ago when examining some funda-

mental problems of quantum mechanics including "hidden" variable theories, Bell's inequalities

and Einstein-Podolsky-Rosen (EPR) paradox, different topological phases etc. (see, e.g., [1-8] and

references therein). Herewith, as a rule, the polarization structure of light has been described

in terms of the field correlation functions, associated Stokes parameters and the Poincare sphere

which are well adapted to classical optics experiments [7,9] but are not quite adequate to spe-

cific quantum ones (photon counting)[3]. Such a description also ignores a polarization SU(2)

symmetry[10-12] of light fields though it has been widely used implicitly - through the Stokes

parameters _ which determine, in particular, the polarization degre degP = [s_ + s_ + s23]l/2/So

of monochromatic plane wave light beams[1,3,9,i3].

But recently a new formalism[10-12] was proposed for a description of polarization structure

of multimode quantum light fields using the polarization SU(2) symmetry and a related concept

of the P-quasispin which generalizes the Stokes vector notion at the quantum level and is closely

related to the Stokes operators defined in [13]. This approach enabled us to gain a new insight

into the polarization structure of light and quantum mechanisms of its depolarization[12,13].

At the same time, so-called squeezed states of light are intensively examined now within quan-

tum optics (see, e.g.,[10,14-1 7] and references therein) since these states have attractive properties

of the "noise reduction" in measurements of some quantum mechanical observables. However, we

note that squeezed states have been studied sufficiently well only for the single-mode fields[15,14]

whereas for multimode fields it is not the case since even the definition of the concept of multimode

squeezing is not unique that is due to a lot of the choices of measurable quantities[16,17].
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The aim of this report is to give an analysis of the concept of squeezing of the multimode light

related to polarization degrees of freedom by using the above mentioned formalism of P-quasispin.

Specifically, we will show that there exist new quantum states of light beams exhibiting, in a sense,

an absolute squeezing in polarization degrees of freedom. Such states are generated by specific

unpolarized biphoton dusters and have all characteristics of usual unpolarized light, but unlike the

latter, new quantum states of unpolarized light are "polarizationally noiseless" [10-12,18]. Besides

we discuss briefly some generalizations and applications of new non-classical states of light to

setting up new optical experiments related to some fundamental problems of physics.

2 Polarization P-quasispin of electromagnetic fields and

unpolarized biphotons

In quantum optics the free transverse electromagnetic(em) field with "m" spatiotemporal modes

is described by the vector potential[I,3,12,13]

'_ 2rh _ .

A(f', t) = A_-)(_, t) + ,4(+)(f', t) = c_(_jV)l/2{A(-)(3)exp[i(_:jg-j,___ wit)] + h.c.},

A(-)(j) = y_ g,(j)a+(j),A (+) = (A(-))+ (2.1)
a=-t-,--,3

where a_(j)/a+(j) are destruction/creation operators for j-th spatiotemporal and a-th polar-

ization modes of the field, ff_(j) are the polarization unit vectors adapted to the helicity basis,

e_(j) = k_/w_, V is a quantization volume, etc. With the help of Eq. (2.1) one determines corre-

lation tensors[3]

Gl::_l,;jl...j,({f'_,t_}; {_,t_})= TrtPE_-)(_'l,tl)...E!;)(f'_,t,)EJ+)(_,t'x)...EJ+)(_,t'p)],

g(a,.) = C_ 10A-(±)/Ot (2.2)

which correspond to different physical quantities, measurable in optical experiments, and are

expressed in terms of quantum expectations of ordered polynomials in operators ao(j) and a + (j)[6].

We note that quantum expectations of any physical quantities are calculated by averaging on the

space Lphw = LF(m) spanned by basis vectors

I{n_'} >= N({n_'})

m

l-I II [nT!] Io> (2.3)
I=l e=--,+

which are generated by the creation operators a+(i) of photons with transverse (a = +,-) polar-

izations (helicities) only (that corresponds to a standard form of the gauge condition for transverse

radiation fields in quantum electrodynamics[12,13]).

The most important of such measurable quantities is the field Hamiltonian

m

HI= y_, y]_ a+(i)a,_(i) (2.4)
i=1 cf=+,-,3
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which determines the time-evolution of other field observables[3].But in polarization quantum
optics there are specific observableswhich characterizeproper polarization properties of fight
beams and correspond to to the group U(2) of a specific polarization gauge invariance of the

Hamiltonian (2.4)[10-12]. This continious polarization group U(2) is closely related to discrete

symmetries of em fields(mirror reflection b: a+(j) _ a+()), k_ = -kj and the spatial inversion

P) since all these (chiral) symmetries act in a natural manner on a 2-dimensional "polarization

spinor" {ga(i),a = 4-} spaces[ll,13].

The generators of the polarization group U(2) are of the form

Po = [a+(i)a+(i) - a+(i)a_(i)] = Po(i),
i=1

m Erg

P+ = y] a+_((i)a_(i) = y] P+(i), N = y_ y]_ a+(i)aa(i) = Y]_ N(i) (2.5)
i----1 i i----1 a-----b,- i

where N is the total photon number operator and operators Pa are generators of the SU(2)

subgroup defining the polarization (P) (quasi)spin [10-12]. The operators Pt_ and N satisfy com-

mutation relations

[N, Pa]=0, [Po, P+]=4-P+, [P+,P_]=2Po (2.6)

and in the case m = 1 coincide up to the factor 1/2 with Stokes operators _a : _1 = 2P2, _2 =

-2P0, _3 = -2P1 [13]. As is clear from Eqs (2.5) the total P-quasispin of the em field is obtained

by adding of the appropriate quasispin quantities for single spatiotemporal modes. However,

from the experimental viewpoint the total P-quasispin of the em field enable us to examine new

interesting physical phenomena connected with correlations of different modes, in particular, with

so-called "entangled states" which are widely discussed in multiparticle interferometry [2,5,19].

Note that the operators Pa do not commute with components Sa of the gauge non-invariant

(and hence locally non-observable) ordinary spin S = ($1, $2, $3) of the em field wich define the

field transformations with respect to the SO(3) C SL(2C) group of rotations in the usual 3-

dimensional space and are expressed in terms of the A(_', t) Fourier components A(,,+)(j) as follows

[13,12]

S,, = -i _ y]_ e,,bcA_-)(j)A_+)(j) (2.7)
j b,c

where e,bc is the fully antisymmetric tensor ( e123 = 1). Specifically, from Eqs.(2.1),(2.7) one easily

finds relations specifying "rotation" properties of different physical operators[12]. For example,

in the case of plane wave beams, when in (2.1) e3,(j) = 63_,a = 1,2,3, e+3(j) = 0 (cad(i) is the

projection (directing cosine) of ga(i) on the "an-th axis of a fixed spatial frame of reference with

the axe OX3 being parallel to all k'j) and $3 = 2P0, one finds a relation

exp(i¢S3)Paexp(-i¢S3) = exp(i2a¢)Pa, a = O, 4-, (2.8)

defining transformations of P-spin components under rotations around the light beam axis.

From Eqs (2.5), (2.7) it follows that the P-quasispin formalism has evident advantages in

comparison with the ordinary spin for describing properly polarization properties of light since

its components have a clear physical meaning and are measurable in quantum optics polarization

experiments related to counting photons with definite polarizations[12]. In particular, the total
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Figure 1: Scheme of the measurement of P-quasispin components

helicity 2P0 of the field is the difference (N+ - N_) of the right- and left- handed photon numbers

and Hermitian operators 2P1 = (P+ + P-) and 2P2 = i(P+ - P_) determine (cf.[9,6]) differences

of photon numbers for two pairs of orthogonal linear polarizations which are connected with the

helicity basis by the linear transformations[12]

i + .a) at(j ) = {a+(j)-a+(j)}, a+(j)= --_{a+(3)+a+(j)} (2.9a)

fi+(j) = ---_2{a+(j) + a+(j)}, 5+(j) = --_2_2{-a+(j) + a+(j)} (2.9b)b)

implemented, for example, with the help of phase plates and polarization rotators [9,6,7]. (From

the formal viewpoint components /'1 and P2 correspond to the choice of different subgroups

SO(2) C SU(2) unlike the helicity subgroup U(1) for P0. Moreover, basis wave functions with

linear polarization defined by Eqs (2.9) are eigenstates of operators describing the abovementioned

discrete symmetries &, P of light fields.)

A typical principal scheme[18] of the measurement of components P_ of P-quasispin is pre-

sented on Fig. 1, where we use the following notations: PP denotes phase plates, PLS stands

for polarization light beam splitters, PAd and PD_ are, respectively, polarization analyzers and

photodetectors for polarization modes "a". We note that this scheme can be realized in both

single-mode (m = 1) and multimode (m > 1) regimes. However, as it will be seen later, the use

of multimode regimes enables us to reveal new interesting physical phenomena, in particular, an

absolutely unpolarized quantum light[10-12].

Since in the case of the monochromatic plane waves quantum expectations < P,_ > are pro-

portionM to the Stokes parameters s_ =< _ >, c_ = 1,2, 3; So =< N > [13], then in general cases

one can consider that quantities < P_ >, < N > determine the polarization degree degP of light

beams with arbitrary wave fronts and frequencies by the relation

degP = 2[ _ (< P_ >)211/2/< N > (2.10)
cf=0,1,2

generalizing the appropriate definition for one-mode light beams[3]. At the same time the quantum

averages < ]p2[ >= p(p + 1) of the SU(2)po, Casimir operator p2 = (1/2)(P+P_ + P_P+) + P_
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areconnectedby the relation

< IP_I >= P(P + 1) = _ [a_ + (< IP.I >)2]
c_=0,1,2

(2.11)

with the variances a_ =< IP_] > -(< [P_] >)2 determining "polarization noises" [3,12,18] and

different uncertainty measures for operators P_(cf. [20-22]).

Therefore, one may use P-spin (P_) as an adequate tool for studying proper polarization

properties of quantum light fields in parallel to the usual apparatus of the correlation functions

and Stokes vector _" = (sx/so, s2/so, sz/so) running on the Poincare sphere[3]. But unlike the

latter, the use of the P-spin formalism allows us to gain a more deep insight into the inner nature

of the polarization struture of light beams with arbitrary wave fronts.

Indeed,as it was shown in [10-12], one can decompose the Fock space LF(m) spanned by the

vectors (2.3) into the direct sum

LF(m) = _ L(PTr) (2.12)
P,_

of infinite-dimensional subspaces L(P_r) which are specified by eigenvalues P, _r of the P-spin and

P0 respectively and spanned by basis vectors ]Pr; n, A > of the form

IPTr;n,A >= E C({a,,_o,'ro}) l-I(a+(i)) '_'l-f(y..+_,, +,_., ,j , (x_s)_"lo >
i i<j

(2.13)

where Eai = 21,rI,E_o = (P- I,rl),E_o = n/2- P. For example, in the cases m = 1 and

m = 2 we have the following expressions[23]

a)]Pr >= [(P- _r)!(P + rr)!]-l/2(a+(1))l'q+'_(a+(1))l'l-'_(Yl+)P-I'q]O >,

b)IPr = +Y;n,t >= [(n + 1)!(n- 2Y)!(Y-t)!(Y + t)!/(2P + 1)!] -1/2

(a+(1))P+t(a+(2))P-t(X+)"/_-PIo >,2t = n(1)- n(2)

for some of such vectors.

defining equations

(2.14a)

(2.14b)

In general, the coefficients C(...) in (2.13) are determined from the

P2[Pr;n,A >= P(P + 1)lP_r;n,A >; PolP_r;n,A >= rlPr;n,A >,

N [PTr;n,A >= n [ P_r;n,A > (2.15)

and some equations for fixing an extra (vector) label _ (see [12,11] and references therein). Oper-
ators

E+=2(a+(i)a+_(j)+ + + • +

t

a_(z)a+(l)),X 0 = a+(i)a+(j) - a+(i)a+(j) (2.16)

in (2.13), (2.14) are the solutions of the operator equations

[po, [p.,xi l=0, .=0,+,- (2.17)

and may be interpreted as creation operators of Po-scalar and P-scalar biphoton kinematic clusters,

respectively.

69



From Eqs(2.16), (2.17) one easily obtains that < Pa >= 0, a = 0, 1,2, in states generated by

actions on the vacuum vectors 10 > of operators (X.+._a[E+._ b only ( and spanned by vectors (2.13)

with _r = 0); these states are examples of entangled states of multiparticle interferometry[5,19]. In

general, the states (2.13) describe light beams representing a mixture of both usual (uncoupled)

photons and unpolarizedP- and P0-scalarbiphotonclustersX,+, [10-12].Asit follows
from (2.13), the total number operators Nph, Nx,Ny, respectively, of uncoupled photons and

X-and Y-type biphotons are given as follows,

N,h = 21P01 = 2 (_o)2, Nx = N/2 - P,N_, = P- IPoI,P = -1/2 + _/1/4 + p2 (2.18)

We, however, note that biphotons Yi + exist for any number "m" of spatiotemporalal modes whereas

X + _ 0 only for "m" > 2. We also emphasize that in contrast to the usual photon operators

a+(j),a_(j) the operators X_# X + += ( _j)+, X_j, Y_j =/y.+_+ +ij / , Yij satisfy not the canonical commu-

tation relations but trilinear commutation relations for quanta of generalized parastatistical fields

(these operators, however, can be transformed in some "particle-like" quanta ones)[ll].

Further, the decomposition (2.12) is invariant with respect to the Lie algebra so* (2m) generated

by biphoton operators Xij, X .+. and commuting with the polarization invariance algebra su(2) =,3

Span{P_}[12,11]. Therefore, states I_b > belonging to a subspace L(P_r) with given P,r at

initial time will be in it for the time evolution governed by the interaction Hamiltonians Hint =
' +

H i ({Xij, X_j }) what is similar to the situation-in the theories with spontaneosly broken symmetry;

examples of such Hamiltonians are given by those of some parametric processes [10-12]. Extending

the algerbra so*(2m) by adding operators Y_j, Y_+ we get the algebra u(m, m) commuting with the

polariztion subalgebra u(1) = S pan{Po} C su(2) and associated with interaction Hamiltonians

Hint " +" += Xij, Xij}) for light propagation in Kerr media) whichHint( {Yij, Yij , (describing, example,

keep invariant for time evolution subspaces L'(r) = _P>II_I L(Pr) (with fixed _r)[121. If we restict
+

ourselves by biphoton operators _i, Yij only we obtain the subalgebra sp(2m, R) C u(m, m). So,

algebras so'(2m),sp(2m, R) and u(m,m) describe specific P-and P0-scalar degrees of freedom of

fight fields which are complementary, in a sense, to-polarization ones.

3 Squeezing in polarization quantum optics. A new clas-

sification of unpolarized light

The decomposition (2.12) implies a new classification of the polarization states of quantum light

fields from the physical viewpoint [11,12]. This classification is closely related to a specific sort of

squeezing of multimode light beams with consideration of polarization.

In fact, a definition of squeezing in quantum mechanics is based on an analysis of different

uncertainty relations for expectations < I(Ai)'I > of a set {Ai, i = 1, ...,r > 1} of non-commuting

Hermitian operators Ai representing some quantum observables[I,14-17,20-25]. These relations

are connected with specific measures of admissible quantum fluctuations ("noises") for joint mea-

surements of all observables Ai in a state I > which characterize differences betveen quantum

observables and their classical analogs(< IA_I >) and are displayed with the help of different

quasiprobabifity functions[3,14,25] and generalized coherent states[3,10,20-22]. Specifically, the

most widespread uncertainty relation (of the Heisenberg type) has the form[I,14,20-22]

AAiAAj > 1/21 < [[Ai,Aj] I >l (3.1)
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where (AA) 2 -- aa =< I(A)21 • -(< IAI >)5 is a standard quadratic measure (variance) of a

deviation of the quantum quantity A from its classical analog. Then the problem of squeezing

consists in finding quantum states minimizing both the product AAiAAj of two "individual"

uncertainty measures (the condition of a joint quasiclassical behaviour of Ai and A3) and one (say,

AAi) of them (the condition of properly squeezing).

If the right side of inequality (3.1) is a c-number this problem is easily solved and leads to

a definition of the usual concept of squeezing related to generalized coherent states of the group

SU(1, 1)[14-17]. For example, it is the case for single-mode em field when we use as observables A_

two quadrature components A1 = X1 = (a+(j) + a,_(j))/x/'2, a2 = X2 = i(a+(j)-a,,(j))/v/2(c_,j

are fixed) [14,15]. However, for multimode em fields the situation becomes more complicated

since in this case we have a more vast set of observables which obey non-trivial commutation

relations[10,16,17]. Therefore, there arc many possibilities of definition of squeezing related to

a choice (from physical considerations) of some subsets of observables (and adequate joint un-

certainty meausures for them) for which a solution of this problem is comparatively simple. As

we established above, in polarization quantum optics it is natural to take as such subsets compo-

nents P_ of the P-quasispin obeying the commutation relations (2.6) of the su(2) algebra as well as

subsets of unpolarized biphoton operators (2.16) of X- and Y- types (related to the "biphoton alge-

bras" so'(2m), sp(2m, R) and u(m, m)). That enables us to define a specific polarization squeezing

which is closely related to a new physical phenomenon of biphoton unpolarized light(UL)[12].

Since operators P_ are similar to angular momentum operators J_, _ = 1,2, 3 obeying the su(2)

commutation relations, one can apply analysis[20,21,24] of uncertainty relations and an appropri-

ate concept of squeezing for operatorsdo to analysis of those for operators P_, a = 1,2, 3(,°3 = P0).

As is known[20-22], the Heisenberg uncertainty relations (3.1) for A; = Ji(i = 1, 2, 3) are minimized

on the SU(2) generalized coherent states[20] I(;-l-j >= exp((J+-('J_)lj; 4-j >,( = -_exp(-i¢)

where IJ; +J > is the highest (or lowest) vector of the SU(2) irreducible representation D _. The

states I¢';-l-j > are maximally close to classical ones[20] and minimize a SU(2)-invariant (cf.

(2.11)) "radial" uncertainty meausure _i a j, (_i a j, = rain = j on the states Iff; +J >) which is

an adequate characteristic of quasiclassical behaviour of a whole set {Ji}[20,21]. Besides, these

states are used for a definition of polarization analogs Q(o, ¢; p)±e = I < _; +PIplC; +P > I2(P

is a density matrix of a light beam) [23] of Q-functions of quasiprobability[3,14] which are wen

adapted for displaying squeezing properties of oscillator systems. Evidently, for physical systems

with a fixed value of j (e.g., for usual spin systems) we obtain an "absolute" squeezing for {J;},

characterized by relations

aj, = 0, A J, = 0 =< IJ l > vi, (3.2a)
i

only for the unique vector 1¢';0 >= 10; 0 >. But for em fields the situation is quite different because

of the decomposition (2.12) for LF(m).

Specifically, as is seen from Eqs (2.13), (2.17), the states I >C L(00) = Span{lO0; n, A >} satisfy

Eqs (3.2a) and provide an "absolute" naininaum of both the aforementioned "radial" uncertainty

measure _i ore, as well as uncertainty relations of the (3.1) type for operators Pi; besides these

states form the infinite-dimensional space on which three non-commuting operators P_ behave

themselves as c-numbers exhibiting an "absolute squeezing" and totally classical behaviour in

polarization degrees of freedom (that it is of interest for designing different experinaents related to

the EPR-paradox and "hidden variable" theories[I,2,5,11]). We note that in Lv(m) there exists
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another classof quantum statesdisplayinga similar (though moreweak, than (3.2a)) property of
polarization squeezing.Namely,for states I >E L'(_r = 0) we find from (2.12)-(2.14)

APo=O=< [P_I>,Y_ap, = P(P + I) # O
i

(3.2b)

As it follows from Eqs (3.2), states IP0;... >E L(PO) C L'(r = 0) and ]00;... >E L(00) possess

the characteristic property (< IP l >= o) of UL (cf.[3,9]). Besides, the calculations [11] showed

(:.(1,1)(_-. _; _., _ have for these states a formthat < [.q_[ >= 0 for all cr and correlation tensors _q x,,

corresponding to UL beams with, in general, arbitrary wave fronts. But unlike classical (chaotic)

UL, for the states [00; ... > and IP0; ... > we have additional characteristics of light depolarization

which follow from Eqs (2.12)-(2.14), (2.17) and are expressed in terms of higher moments for P_:

< I(Po)_l >=Ors = 1,2,...,I >_ L'(r = 0);

< I(P,)'I >= 0Vo_ = 0,+,-,s = 1,2,..., I >E L(00) (3.3)

showing the absence of appropriate polarization "noises" (< I(P_)'] > -(< I(P-)I >)_-, a = 0, 1,2

for I >E L(00) and a = 0 for I >E L'(_r = 0)) of any order measured by appropriate noises of

difference photocurrents in schemes of Fig. 1; herewith, as it follows from Eq. (2.8), for axial

(plane wave) light beams results of measurements do not depend on rotations of analyzers around

beam axis.

So, for states I >E L(00) all proper polarization properties are identical with those for vacuum

state [0 >, but unlike tim latter the light intensity < IHjl > in these states(with the Hamiltonian

H S from Eq. (2.3)) is not equal to zero. Consequently, they may be recognized as states describing

absolutely unpolarized light while the states I >E L'(0) have a hidden polarization structure

revealed in measurements of linear polarization noises. Therefore, states ]¢ >E L'(0) generated
r+

by biphotons Y,+,X,j and ]¢ >E L(00) C L'(0) generated only by biphotons X, + describe new

types of UL due to strong quantum phase correlations rather than random mixing light beams

as it is the case for the classical UL [3,9]. Examples of such states are yielded by generalized

coherent states of the above biphoton algebras (and appropriate groups) related with interaction
• + * +

Hamiltonians Hint = H_nt + H£t where H£t = Y_i<j(gijXij + gijXo),H£t = _i-]_i,:(fij_J + fijYij )

describing some specific paranaetric processes[11]. In particular, generalized coherent states of the

SO'(2m) group orbit type

t{3',j} >P= Sx({'_o})IO >= exp[_--_(3,,jX,: - 7i:Xo)]lO"+ > (3.4)

discussed together with some related models in [10-11] are generated by H_n t whereas H_n t produces

generalized coherent states of the group Sp(2m, R) C U(m, m)

I{_,:} >P0 = Sy({/3q})]0 >= exp[_-_(_,iYi + - _i_j)]l 0 > (3.5)

coinciding in the case m = 1 with two-mode squeezed states introduced in [15] and related to the

SU(1, 1) group [11,12]. in general cases states (3.4), (3.5) display some properties of specific mul-

timode squeezing associated with biphoton algebras so'(2rn),sp(2m, R),u(m,m)(cf.[10-12,16]).

Therfore, operators Sx, Sy can be called as biphoton squeezing operators. Without dwelling here
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Figure 2: Scheme of production of biphoton unpolarized light

on analysis of all their properties we note that operators Sx commute with the "proper" polar-

ization squeezing operators Sp(_) = exp(¢P+ - ¢*P_) while it is not the case for the operators

Sy.

Physical realizations of such states, connected with actions of P0- and P-scalar biphoton

squeezed operators St" ({_ij }) and Sx ({7ij}) on the vacuum vectors 10 >, are represented schemat-

ically on Fig. 2 where POG stands for parametric oscillator generators corresponding to the

operators Sy, Sx and other notations are the same as on Fig 1. We note that, in practice, it is

easier to realize such schemes corresponding to Eq. (3.5) rather than Eq. (3.4) because the latter

require parametric oscillator crystals with highly anisotropic properties. Therefore, for production

of P-scalar light it is preferable to combine more simple schemes of production of P0-scalar light

together with some interferometric schemes[5,18,19].

Thus, our analysis displays inner mechanisms of the light depolarization at the quantum level

by contrast to the generally accepted viewpoint [9] that randomization is the only way of obtaining

UL. Besides, the P-spin formalism yields (see (2.17) and (2.18)) some new natural measurable

quantitative characteristics of light depolarization, namely, degrees depp = (1 - 2P/N) and

depp o = (1 -12#l/p)) of the content of P-scalar and of P0-scalar biphotons where /5, # = /50,/_-

denote expectation values of appropriate operators; herewith /5 = -1/2 + [1/4+ < IN21 is

determined from Eqs (2.10), (2.11) as a function of degP, JV and variances _r_. Evidently, depp o

is connected with thewell-known degree of circular polarization [ < N+ > - < N_ > I/ < N >

whereas depp provides a new quantitative characteristic of polarization structure of light related

to measurements of polarization noises.

We also note that analysis above can be extended by considering modifications of the de-

composition (2.12) where any' other Hermitian operator P,_ = Sp(((ff))Po(Sp(_(_))) + is diag-

onalized instead of Po (Sp((,(if)) = exp(C(g)P+- _'*(ff)P_), C(77) = -°exp(-i¢) and vector

ff = (sin 0 cos ¢, sin 0 sin ¢, cos 0) corresponds to a position of the Stokes vector g on the Poincare

sphere). Specifically, one can diagonalize ttermitian operators P_,a = 1,2 corresponding to

a linear polarization basis of light beams[12]. Such extensions lead to new states of quan-

tum UL generated by P,_(e.g., P1-or P2)- scalar biphotons Yi+(g) = (Sp(_(ff)))+}[:.+Sp(_(_))

of the (2.16) type and having characteristics similar to those described by Eqs (3.2)-(3.3) but

with some peculiarities concerning their "rotation" properties determined by Eqs (2.8); for ex-

ample, the condition API(2) = 0 is valid only for quite definite angle positions of polariza-

tion analyzers. We also note that usual multimode Glauber coherent states I{_+,c_ -} >=

[Iiexp(a+a+(i) + a;a+_(i) +* -.-a i a+(i)- c_i a_(i))lO >,ap -/0, which are in general cases states
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of partially polarized light, contain ( for special values of parameters a_) a subclass of states

corresponding to UL. In particular, all such states display properties(< IP_[ >= 0, aPo # 0Va) of

usual UL, when the condition la +l- 1_71 is fulfilled[8,181.

All this leads to a new classification of states of UL within quantum optics which can be

represented by a chain of embedded subsets

UL ° D UL c D UL bp D UL P° D UL P (3.6)

with the following typical density matrices for each subset:

a)UL ° '-* Pth, (3.7a)

b)UL c "* Pc = I{_+} >< I +1 = Is-I,

c)UL by ---. pbp= IA >< AI, IA >=exp(AP+- AP-)I >, I >_ L'(_r = 0),

el) ULP° -* PPo = [ >< I,I >--- Sr({/_¢})10 >_ L'(_r = 0),

e)U LP _ PP = ]>< I,I >= >e L(00)

(3.7b.)
(3.7c)

(3.7d)

(3.7e)

where p,h is a density matrix for the thermal radiation[3], pc describes coherent UL whereas

Pbp, PP_, PP correspond to different kinds of biphoton UL[12]. We note that all these classes of UL

are distinguished by values of depp = (1 - 2P/N) and depp 0 = (1 -12_I/N).

4 Generalizations and conclusion

Thus, in the previous sections we have shown that in the Fock space LF(m) of multimode light

with consideration of polarization one can pick out with the help of Eq. (2.12) subspaces (L(P =

0_r = 0), L'(_r = 0) and someones related to them) of quantum states describing different new types

of UL hght and, simultaneously, manifesting specific forms of squeezing in polarization optics. All

other subspaces L(PTr),L'(_r),r > 0, in the decomposition (2.12) describe, generally speaking,

states of partially depolarized quantum light (see [10,11] where we also examined various types of

polarization generalized coherent states of light).

However, in real physical experimental situations states of light beams do not belong to a single

subspace L(P_r) but are superpositions of states from different subspaces L(Pr). Therefore, it is of

interest to study polarization squeezing properties (with using measurement devices of schemes on

Fig. 1) of partially polarized light beams obtained by actions of the biphoton squeezing operators

Sy, Sx together with the "proper" polarization squeezing operators Sp(_) on states [in >phu, of

some physical input light beams

IPPSL >x/r= Sp(()(Sx({'7,j})lSr({Bij}))lin >phi, (4.1)

that is presented schematically on Fig 3. As a result we can obtain new (non-classical) sets of

states of partially polarized light which can be called as partially polarized squeezed light(PPSL).

Specifically, taking as lin >phy8 usual multimode Glauber coherent states I{a+,a_ "} >,a_ # 0,

we get in such a manner states of PPSL which contain (at the condition = 1 71) a subclass

of states corresponding to UL c in the classification above. In general, transmitting different haput
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Figure 3: Scheme of production of partially polarized squeezed light

beams through physical devices corresponding to different combination of the above squeezing

operators in (4.1), one can obtain new classes of partially polarized light distinguished by values

of depp = (1 - 2P/N) and depp o = (1 -[2_[/N) by analogy with UL.

In conclusion we emphasize that the above results give a more deep .insight into polarization

structure of light beams enabling to determine new nonusual states in quantum optics. In a sense,

the results of section 2,3 and those of papers [10-12] yield all necessary prerequisites for developing

a quantum description of unpolarized light waves whose existence has not yet an adequate solution

within the classical optics[26]. All this opens some possibilities in setting new optical experiments

related, in particular, to "hidden" variables, "entangled states" and EPR paradox [1,2,5,6,19],

polarization chaos, spontaneous symmetry breaking and bistability [8,11,12], "optical atoms" and

reduction of quantum noises [4,6,11,12,19] etc. From other lines of possible applications of the

results above we point out precise measurements in spectroscopy of anisotropic media[18] and

studies of interaction of light in different new polarization states with optically active biological

macromolecules (using the interrelations between the above chiral symmetries su(2), &, P of em

fields and chiral properties of such molecules)[27].
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